organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3-Bromo-N'-[(E)-4-hydroxybenzylidene]benzohydrazide

Tao Yang, Guo-Biao Cao,* Ji-Ming Xiang and Li-Hui Zhang

Department of Chemistry, Ankang University, Ankang, Shanxi 725000, People's Republic of China Correspondence e-mail: guobiao_cao@126.com

Received 23 May 2008; accepted 27 May 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.003 Å; R factor = 0.031; wR factor = 0.060; data-to-parameter ratio = 15.7.

The title compound, $C_{14}H_{11}BrN_2O_2$, was synthesized by the reaction of 4-hydroxybenzaldehyde with an equimolar quantity of 3-bromobenzohydrazide in methanol. The dihedral angle between the two benzene rings is $40.1 (2)^{\circ}$. In the crystal structure, molecules are linked through intermolecular O- $H \cdots O, O - H \cdots N$ and $N - H \cdots O$ hydrogen bonds to form a three-dimensional network.

Related literature

For related structures, see: Cao (2007*a*,*b*).

Å

Experimental

Crystal data

$C_{14}H_{11}BrN_2O_2$ M = 310.16	$b = 11.7337 (18) \tilde{A}$
$M_r = 519.16$ Orthorhombic, $P_{2_1} 2_{1_2} 2_{1_2}$	C = 13.021 (2) Å $V = 1332.0 (3) \text{ Å}^3$
a = 7.5576 (11) Å	Z = 4

Mo $K\alpha$ radiation $\mu = 3.08 \text{ mm}^{-1}$

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2001) $T_{\rm min}=0.577,\;T_{\rm max}=0.638$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.030$ $wR(F^2) = 0.059$ S = 0.972757 reflections 176 parameters 1 restraint

T = 298 (2) K $0.20 \times 0.17 \times 0.16 \text{ mm}$

7740 measured reflections 2757 independent reflections 2145 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.038$

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{\rm max} = 0.17 \ {\rm e} \ {\rm \AA}^2$ $\Delta \rho_{\rm min} = -0.29 \text{ e } \text{\AA}^{-3}$ Absolute structure: Flack (1983), with 1154 Friedel pairs Flack parameter: 0.006 (9)

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{l} O1 - H1 \cdots O2^{i} \\ O1 - H1 \cdots N1^{i} \\ N2 - H2A \cdots O1^{ii} \end{array}$	0.82 0.82 0.904 (10)	1.95 2.56 2.136 (14)	2.750 (2) 3.003 (3) 3.007 (3)	166 116 162 (3)

Symmetry codes: (i) $-x, y - \frac{1}{2}, -z + \frac{1}{2}$; (ii) $-x + \frac{1}{2}, -y, z + \frac{1}{2}$.

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The Natural Scientific Research Foundation of the Education Office of Shanxi Province (Project No. 07JK177) and the Special Scientific Research Foundation of the Education Office of Shanxi Province (Project No. 04JK302) are gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2509).

References

Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

- Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA
- Cao, G.-B. (2007a). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 37, 639-642.
- Cao, G.-B. (2007b). Acta Cryst. E63, m1149-m1150.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2008). E64, o1186 [doi:10.1107/S1600536808015912]

3-Bromo-N'-[(E)-4-hydroxybenzylidene]benzohydrazide

T. Yang, G.-B. Cao, J.-M. Xiang and L.-H. Zhang

Comment

We have recently reported some transition metal complexes with Schiff base ligands (Cao, 2007*a*,*b*). We report herein the crystal structure of the title compound, (I), derived from the reaction of 4-hydroxybenzaldehyde with an equimolar quantity of 3-bromobenzohydrazide in methanol.

In compound (I), Fig. 1, the dihedral angle between the two benzene rings is 40.1 (2)°. In the crystal structure, molecules are linked through intermolecular O—H···O, O—H···N, and N—H···O hydrogen bonds, Table 1, to form a three-dimensional network, Figure 2.

Experimental

The compound was prepared by refluxing equimolar quantities of 4-hydroxybenzaldehyde with 3-bromobenzohydrazide in methanol. Colourless block-like crystals were formed when the solution was evaporated in air for about a week.

Refinement

H2A was located in a difference Fourier map and refined isotropically, with the N—H distance restrained to 0.90 (1) Å. The other H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.93 Å, the O—H distance 0.82 Å, and with $U_{iso}(H)$ set at $1.2U_{eq}(C)$ and $1.5U_{eq}(O)$.

Figures

Fig. 1. The molecular structure of (I) with ellipsoids drawn at the 30% probability level.

Fig. 2. The molecular packing of (I), viewed along the *a* axis. Hydrogen bonds are drawn as dashed lines.

3-Bromo-N'-[(E)-4-hydroxybenzylidene]benzohydrazide

Crystal data	
$C_{14}H_{11}BrN_2O_2$	$F_{000} = 640$
$M_r = 319.16$	$D_{\rm x} = 1.591 { m Mg m}^{-3}$

Orthorhombic, $P2_12_12_1$ Hall symbol: P 2ac 2ab a = 7.5576 (11) Åb = 11.7337 (18) Åc = 15.021 (2) Å $V = 1332.0 (3) \text{ Å}^3$ Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer	2757 independent reflections
Radiation source: fine-focus sealed tube	2145 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.038$
T = 298(2) K	$\theta_{\text{max}} = 26.6^{\circ}$
ω scans	$\theta_{\min} = 2.2^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2001)	$h = -9 \rightarrow 9$
$T_{\min} = 0.577, \ T_{\max} = 0.638$	$k = -10 \rightarrow 14$
7740 measured reflections	$l = -18 \rightarrow 18$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H atoms treated by a mixture of independent and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.031$	$w = 1/[\sigma^2(F_o^2) + (0.0151P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.059$	$(\Delta/\sigma)_{\rm max} = 0.001$
<i>S</i> = 0.97	$\Delta \rho_{max} = 0.17 \text{ e } \text{\AA}^{-3}$
2757 reflections	$\Delta \rho_{min} = -0.29 \text{ e } \text{\AA}^{-3}$
176 parameters	Extinction correction: none
1 restraint	Absolute structure: Flack (1983), with 1154 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: 0.006 (9)

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 .

Mo K α radiation $\lambda = 0.71073$ Å Cell parameters from 1827 reflections $\theta = 2.3-24.5^{\circ}$ $\mu = 3.09 \text{ mm}^{-1}$ T = 298 (2) K Block, colourless $0.20 \times 0.17 \times 0.16 \text{ mm}$ factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
Br1	0.04594 (5)	0.39161 (3)	0.901456 (17)	0.06805 (13)
01	0.1347 (3)	-0.14174 (14)	0.15827 (10)	0.0414 (5)
H1	0.0663	-0.1163	0.1208	0.062*
O2	0.0446 (3)	0.45672 (13)	0.48129 (10)	0.0435 (4)
N1	0.1134 (3)	0.23480 (18)	0.46451 (12)	0.0380 (6)
N2	0.1329 (3)	0.29110 (18)	0.54514 (12)	0.0372 (5)
C1	0.1401 (3)	0.0602 (2)	0.38450 (14)	0.0310 (6)
C2	0.0757 (3)	0.1044 (2)	0.30437 (14)	0.0343 (6)
H2	0.0339	0.1789	0.3024	0.041*
C3	0.0735 (3)	0.03889 (19)	0.22853 (14)	0.0331 (6)
H3	0.0315	0.0692	0.1754	0.040*
C4	0.1341 (3)	-0.0726 (2)	0.23148 (14)	0.0309 (6)
C5	0.1975 (3)	-0.1177 (2)	0.31015 (15)	0.0357 (6)
H5	0.2381	-0.1925	0.3120	0.043*
C6	0.2003 (3)	-0.0514 (2)	0.38585 (15)	0.0352 (6)
H6	0.2432	-0.0820	0.4387	0.042*
C7	0.1494 (3)	0.1299 (2)	0.46504 (15)	0.0348 (6)
H7	0.1829	0.0958	0.5183	0.042*
C8	0.0976 (3)	0.4039 (2)	0.54681 (14)	0.0339 (6)
C9	0.1227 (3)	0.4615 (2)	0.63473 (15)	0.0333 (6)
C10	0.0837 (3)	0.4069 (2)	0.71421 (14)	0.0373 (6)
H10	0.0457	0.3315	0.7143	0.045*
C11	0.1020 (4)	0.4657 (2)	0.79290 (15)	0.0405 (7)
C12	0.1571 (4)	0.5781 (2)	0.79396 (18)	0.0482 (8)
H12	0.1689	0.6169	0.8476	0.058*
C13	0.1942 (4)	0.6314 (2)	0.7149 (2)	0.0516 (8)
H13	0.2320	0.7068	0.7151	0.062*
C14	0.1760 (4)	0.5743 (2)	0.63504 (17)	0.0425 (7)
H14	0.1995	0.6116	0.5817	0.051*
H2A	0.195 (4)	0.257 (2)	0.5890 (15)	0.080*
Atomic displace	ement parameters (Å	²)		

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0960 (3)	0.0793 (2)	0.02888 (14)	0.0102 (2)	0.00631 (17)	-0.00726 (16)
01	0.0589 (13)	0.0376 (10)	0.0276 (8)	0.0034 (9)	-0.0034 (9)	-0.0093 (8)
02	0.0655 (12)	0.0350 (10)	0.0301 (8)	0.0023 (10)	-0.0072 (10)	0.0018 (8)
N1	0.0566 (16)	0.0338 (13)	0.0237 (10)	0.0039 (11)	-0.0060 (10)	-0.0063 (9)
N2	0.0581 (16)	0.0306 (13)	0.0230 (11)	0.0104 (11)	-0.0077 (10)	-0.0070 (9)
C1	0.0354 (14)	0.0340 (13)	0.0236 (13)	-0.0019 (11)	-0.0012 (10)	-0.0033 (10)
C2	0.0435 (16)	0.0295 (12)	0.0298 (11)	-0.0011 (13)	0.0013 (11)	-0.0003 (11)
C3	0.0424 (16)	0.0334 (14)	0.0235 (11)	0.0021 (12)	-0.0035 (11)	0.0015 (10)

supplementary materials

C4	0.0343 (14)	0.0348 (15)	0.0238 (12)	-0.0046 (11)	0.0011 (11)	-0.0070 (10)
C5	0.0470 (17)	0.0258 (14)	0.0343 (12)	0.0036 (13)	-0.0010 (11)	-0.0011 (12)
C6	0.0452 (16)	0.0362 (14)	0.0243 (13)	0.0032 (11)	-0.0068 (11)	0.0013 (11)
C7	0.0414 (15)	0.0393 (17)	0.0238 (11)	0.0003 (13)	-0.0026 (11)	-0.0027 (11)
C8	0.0370 (16)	0.0361 (15)	0.0287 (12)	-0.0032 (13)	0.0000 (10)	-0.0013 (12)
C9	0.0362 (15)	0.0342 (15)	0.0297 (12)	0.0039 (12)	-0.0045 (11)	-0.0069 (11)
C10	0.0434 (17)	0.0381 (14)	0.0304 (12)	0.0049 (13)	-0.0038 (11)	-0.0097 (12)
C11	0.0450 (18)	0.0456 (17)	0.0308 (13)	0.0094 (13)	-0.0012 (11)	-0.0093 (12)
C12	0.0512 (19)	0.055 (2)	0.0388 (15)	0.0096 (15)	-0.0131 (14)	-0.0196 (14)
C13	0.054 (2)	0.0368 (17)	0.0644 (19)	0.0002 (14)	-0.0103 (15)	-0.0221 (15)
C14	0.0483 (18)	0.0370 (17)	0.0421 (15)	-0.0020 (13)	-0.0031 (13)	-0.0037 (12)

Geometric parameters (Å, °)

Br1-C11	1.896 (3)	C5—C6	1.378 (3)
O1—C4	1.367 (3)	С5—Н5	0.9300
01—H1	0.8200	С6—Н6	0.9300
O2—C8	1.230 (3)	С7—Н7	0.9300
N1—C7	1.260 (3)	C8—C9	1.495 (3)
N1—N2	1.387 (2)	C9—C14	1.384 (4)
N2—C8	1.351 (3)	C9—C10	1.387 (3)
N2—H2A	0.904 (10)	C10—C11	1.376 (3)
C1—C6	1.386 (3)	C10—H10	0.9300
C1—C2	1.398 (3)	C11—C12	1.382 (4)
C1—C7	1.462 (3)	C12—C13	1.371 (4)
C2—C3	1.374 (3)	C12—H12	0.9300
С2—Н2	0.9300	C13—C14	1.381 (4)
C3—C4	1.386 (3)	C13—H13	0.9300
С3—Н3	0.9300	C14—H14	0.9300
C4—C5	1.381 (3)		
C4—O1—H1	109.5	N1—C7—H7	119.0
C7—N1—N2	115.88 (19)	С1—С7—Н7	119.0
C8—N2—N1	117.51 (19)	O2—C8—N2	122.9 (2)
C8—N2—H2A	121.7 (19)	O2—C8—C9	121.4 (2)
N1—N2—H2A	119 (2)	N2—C8—C9	115.7 (2)
C6—C1—C2	118.5 (2)	C14—C9—C10	120.1 (2)
C6—C1—C7	120.0 (2)	C14—C9—C8	118.2 (2)
C2—C1—C7	121.4 (2)	C10—C9—C8	121.7 (2)
C3—C2—C1	120.7 (2)	C11—C10—C9	119.1 (2)
С3—С2—Н2	119.7	C11—C10—H10	120.5
С1—С2—Н2	119.7	C9—C10—H10	120.5
C2—C3—C4	119.8 (2)	C10-C11-C12	121.3 (2)
С2—С3—Н3	120.1	C10-C11-Br1	119.1 (2)
С4—С3—Н3	120.1	C12—C11—Br1	119.65 (19)
O1—C4—C5	117.4 (2)	C13—C12—C11	119.1 (2)
O1—C4—C3	122.4 (2)	C13—C12—H12	120.4
C5—C4—C3	120.2 (2)	C11—C12—H12	120.4
C6—C5—C4	119.7 (2)	C12—C13—C14	120.7 (3)
С6—С5—Н5	120.2	C12—C13—H13	119.6

С4—С5—Н5	120.2		C14—C13—H13		119.6
C5—C6—C1	121.1 (2)		C13—C14—C9		119.7 (3)
С5—С6—Н6	119.5		C13-C14-H14		120.1
C1—C6—H6	119.5		C9—C14—H14		120.1
N1—C7—C1	122.1 (2)				
Hydrogen-bond geometry (Å, °)					
D—H···A		<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
O1—H1···O2 ⁱ		0.82	1.95	2.750 (2)	166
O1—H1···N1 ⁱ		0.82	2.56	3.003 (3)	116
N2—H2A···O1 ⁱⁱ		0.904 (10)	2.136 (14)	3.007 (3)	162 (3)
Symmetry codes: (i) $-x$, $y-1/2$, $-z+1/2$;	(ii) $-x+1/2$,	y, z+1/2.			

Fig. 1

Fig. 2